منابع مشابه
Ensemble Approaches of Support Vector Machines for Multiclass Classification
Support vector machine (SVM) which was originally designed for binary classification has achieved superior performance in various classification problems. In order to extend it to multiclass classification, one popular approach is to consider the problem as a collection of binary classification problems. Majority voting or winner-takes-all is then applied to combine those outputs, but it often ...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملMulticlass Classification Calibration Functions
In this paper we refine the process of computing calibration functions for a number of multiclass classification surrogate losses. Calibration functions are a powerful tool for easily converting bounds for the surrogate risk (which can be computed through well-known methods) into bounds for the true risk, the probability of making a mistake. They are particularly suitable in non-parametric sett...
متن کاملHierarchical Multiclass Object Classification
Humans can use similarity between objects in order to recognize rare objects. They also make many abstract concepts when they see some objects very often. Interestingly, a large part of brain is associated with common classes like faces rather than rare objects like Ostrich. In our work we want to propose a model that has four mentioned characteristics. 1. Use more resources for categories that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2018
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2018.2860562